5958 measured reflections 4849 independent reflections

2 standard reflections every 98 reflections intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.147$
$S=1.077$
4849 reflections
408 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.075 P)^{2} \\
&+1.148 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.01 \\
& \Delta \rho_{\max }=0.66 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected bond lengths (\AA)

$\mathrm{Ni} 1-\mathrm{N} 1 B$	$2.113(3)$	$\mathrm{Nil}-\mathrm{N} 1 A$	$2.129(3)$
$\mathrm{Nil}-\mathrm{N} 1 E$	$2.118(3)$	$\mathrm{Nil}-\mathrm{N} 1 C$	$2.134(3)$
$\mathrm{Ni} 1-\mathrm{N} 1 F$	$2.121(3)$	$\mathrm{Nil}-\mathrm{N} 1 D$	$2.139(4)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H. ${ }^{\text {- }}$	D-H	H \cdots A	D. . A	D-H. ${ }^{\text {a }}$ A
$\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA} \cdots \mathrm{OS}^{\text {i }}$	0.88 (5)	1.82 (5)	2.690 (6)	172 (4)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA} \cdots \mathrm{Ol}^{\text {ii }}$	0.85 (5)	1.93 (6)	2.749 (6)	163 (4)
$\mathrm{N} 2 \mathrm{C}-\mathrm{H} 2 \mathrm{CA} \cdots \mathrm{O}^{\text {iii }}$	0.87 (4)	1.87 (3)	2.723 (5)	168 (3)
$\mathrm{N} 2 \mathrm{D}-\mathrm{H} 2 \mathrm{DA} \cdots \mathrm{O} \mathrm{O}^{\text {iv }}$	0.83 (4)	1.99 (4)	2.812 (5)	169 (4)
$\mathrm{N} 2 \mathrm{E}-\mathrm{H} 2 E A \cdots \mathrm{O}^{\text {v }}$	0.88 (5)	1.93 (5)	2.768 (6)	160 (4)
$\mathrm{N} 2 \mathrm{~F}-\mathrm{H} 2 \mathrm{FA} \cdots \mathrm{O} 2$	0.86 (4)	1.98 (5)	2.801 (5)	163 (4)
Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-x,-y,-z$; (iii) $-x,-y, 1-z$; (iv) $1-x,-y,-z$; (v) $x, 1+y, z$.				

H atoms were initially idealized and those relevant for the description of the hydrogen bonding were subsequently refined with a unique refinable $\mathrm{N}-\mathrm{H}$ distance [final value 0.85 (2) \AA], while those attached to carbon were allowed to ride. The ethanol solvate molecule could only be worked out with restrained $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ distances, and a fractional occupation factor which refined to a final value of 0.52 (4). Only the five H atoms attached to carbon were included; the hydroxy H atom was not found and was thus disregarded. During refinement, the terminal methyl group was allowed to rotate. The rather large displacement parameters exhibited by the solvate and the concentration of the largest residual electron-density peaks around it (range $0.67-0.35 \mathrm{e}^{\AA^{-3}}$) suggested some kind of disorder. Outside this zone, the final ΔF map showed no relevant features, with extreme values below $0.35 \mathrm{e}^{\circ} \AA^{-3}$.

Data collection: P3/P4-PC Diffractometer Program (Siemens, 1991). Cell refinement: P3/P4-PC Diffractometer Program. Data reduction: XDISK in SHELXTLIPC (Sheldrick, 1994). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP in SHELXTLPC. Software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1983) and CSD (Allen \& Kennard, 1993).

This work was supported by the Universidad de Buenos Aires and by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), grant PMTPICT0051. MP is a member of CONICET.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1429). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Baggio, R., Garland, M. T., Perec, M. \& Vega, D. (1999). Inorg. Chim. Acta, 284, 49-54.
Dev, S., Ramli, E., Rauchfuss, T. B. \& Wilson, S. R. (1991). Inorg. Chem. 30, 2514-2519.
Ingen Schenau, A. D. van (1975). Acta Cryst. B31, 2736-2738.
Ivarsson, G. J. M. \& Forsling, W. (1979). Acta Cryst. B35, 18961897.

Konopelski, J. P., Reimann, C. W., Hubbard, C. R., Mighell, A. D. \& Santoro, A. (1976). Acta Cryst. B32, 2911-2913.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Povse, V., Perec, M., Baggio, R. \& Garland, M. T. (1998). Acta Cryst. C54, 1817-1820.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1994). SHELXTLPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tebbe, K.-F. \& Nafepour, S. (1994). Acta Cryst. C50, 1566-1569.

Acta Cryst. (1999). C55, 860-863

μ_{3}-Iodo-2:3:4 $\kappa^{3} I$-tri- μ_{3}-sulfido-1:2:3 $\kappa^{3} S$;1:2:4 $\kappa^{3} S$; $1: 3: 4 \kappa^{3} S$-sulfido-1 κS-tris-(triphenylphosphine)-2 $\kappa P, 3 \kappa P, 4 \kappa P$ -trisilvertungsten-triphenylphosphine sulfide (1/1)

Qiong-Hua Jin, ${ }^{a}$ Xiu-Lan Xin, ${ }^{b}$ Yu-Heng Deng ${ }^{a}$ and Kal-Bei Yu ${ }^{c}$
${ }^{a}$ Department of Chemistry, Capital Normal University, Beijing 100037, People's Republic of China, ${ }^{\text {b }}$ Department of Chemical Engineering, Beijing Institute of Light Industry, Beijing 100037, People's Republic of China, and 'Chengdu Center of Analysis and Determination, Academia Sinica, Chengdu 610041, People's Republic of China. E-mail: jinqh@mailhost.cnu.edu.cn

(Received 21 July 1998; accepted 18 February 1999)

Abstract

The crystal structure of $\left[\mathrm{Ag}_{3} \mathrm{WS}_{4} \mathrm{I}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{3}\right]$-$\mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ comprises discrete neutral $\left[\mathrm{Ag}_{3} \mathrm{WS}_{4} \mathrm{I}\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{3}\right]$ and $\mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ molecules. The $\left[\mathrm{Ag}_{3}-\right.$ $\left.\mathrm{WS}_{4} \mathrm{I}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{3}\right]$ skeleton is cubane-like and the phosphorus environment of the $\operatorname{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ molecule is a distorted tetrahedron.

Comment

$\mathrm{Mo}(\mathrm{W})-\mathrm{Cu}(\mathrm{Ag})-\mathrm{S}$ clusters have been studied intensively and extensively because of their biological functions (McLendon \& Martell, 1976), and have been found recently to exhibit a strong non-linear optical (NLO) effect (Hou et al., 1994; Chen et al., 1995; Shi \& Xin, 1995). Some W-Ag-S clusters are comparable with or even superior to C_{60}, one of the best NLO materials (Hou et al., 1996). In this paper, we report the structure of a new $\mathrm{W}-\mathrm{Ag}-\mathrm{S}$ cluster, i.e. $\left[\mathrm{Ag}_{3} \mathrm{WS}_{4} \mathrm{I}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{3}\right]$-$\mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, (I).

(I)

The title compound is composed of discrete $\left[\mathrm{Ag}_{3}-\right.$ $\left.\mathrm{WS}_{4} \mathrm{I}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{3}\right]$ and $\mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ molecules (Fig. 1). The skeleton of the cubane-like tetranuclear cluster consists of one W , one $\mu_{3}-\mathrm{I}$, three $\mu_{3}-\mathrm{S}$ and three Ag atoms. The cluster has crystallographically imposed $C_{3 v}$ symmetry, the W, I and S1 atoms being located on the
C_{3} axis. Three rhombic $\mathrm{WS}_{2} \mathrm{Ag}$ planes, together with $\mathrm{SAg}_{2} \mathrm{I}$, form the cubane-like core. The W atom is bound to three $\mu_{3}-\mathrm{S}$ atoms and one terminal S atom, basically retaining the tetrahedral geometry of the $\left[\mathrm{WS}_{4}\right]^{2-}$ anion. Each Ag atom is bound to three $\mu_{3}-\mathrm{S}$ atoms, one $\mu_{3}-\mathrm{I}$ atom and one P atom of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$. The $\mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ moiety, in which the P atom is positioned at the center of the distorted tetrahedral $\operatorname{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ array, has the same symmetry as the neutral cluster, with the C_{3} axis passing through the P2 and S3 atoms.

In the three $\mathrm{WS}_{2} \mathrm{Ag}$ planes, the sets of $\mu_{3}-\mathrm{S}-\mathrm{W}-$ $\mu_{3}-\mathrm{S}\left[110.02(5)^{\circ}\right.$] and $\mathrm{S}-\mathrm{Ag}-\mathrm{S}$ [89.62 (9) ${ }^{\circ}$] angles are necessarily equal, while the $\mathrm{W}-\mathrm{S}-\mathrm{Ag}$ angles range from 77.19 (5) to $78.62(5)^{\circ}$. In the three $\mathrm{SAg}_{2} \mathrm{I}$ planes, the sets of three $\mathrm{Ag}-\mathrm{I}-\mathrm{Ag}[70.56 \text { (3) })^{\circ}$] and $\mathrm{Ag}-\mathrm{S}$ $\mathrm{Ag}\left[82.97(6)^{\circ}\right]$ angles are also necessarily equal, while the S -Ag-I angles vary in the range of about 1.6° [101.75(5)-103.39(5) ${ }^{\circ}$. Likewise, the lengths of the three $\mathrm{W}-\mu_{3}-\mathrm{S}$ bonds and the $\mathrm{Ag}-\mathrm{I}$ bonds are necessarily identical, while the lengths of six $\mathrm{Ag}-\mathrm{S}$ bonds are divided into two sets, 2.638 (2) and 2.571 (2) A. The $\mathrm{W}-\mathrm{S}_{t}\left(\mathrm{~S}_{t}\right.$ represents terminal S) distance of $2.112(4) \AA$, which is significantly shorter than those of three $\mu_{3}-\mathrm{S}-$ W bonds [2.241 (2) A], reflects the obvious double bond between the S_{t} and W atoms.

It is interesting that the $\mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ molecule exists between $\mathrm{W}-\mathrm{Ag}-\mathrm{S}$ molecules in the title compound, which is similar to the arrangement in $\left[\mathrm{Ag}_{3} \mathrm{WS}_{4} \mathrm{Br}\right.$ -

Fig. 1. View of the title complex, with displacement ellipsoids shown at the 30% probability level.
$\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}_{3}\right] \cdot \mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\right.$ Lang et al., 1993). $\mathrm{SP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ may be produced by the reaction of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ with S of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{WS}_{4}$ in the presence of oxidizer AgI , while Ag^{1} is reduced to Ag^{0}.

Experimental

AgI, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{WS}_{4}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ in a molar ratio of 2:1:2 were ground well and heated together at 373 K for 10 h . The product mixture was extracted with DMF, and ' PrOH was added to the upper layer of the solution. Orange columnar crystals were obtained after several days.

Crystal data

$\left[\mathrm{Ag}_{3} \mathrm{WS}_{4} \mathrm{I}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{3}\right]$.-
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{PS}$
$M_{r}=1843.74$
Trigonal
R3c
$a=16.4555(9) \AA$
$c=44.178(5) \AA$
$V=10360.0(13) \AA^{3}$
$Z=6$
$D_{x}=1.773 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction:
empirical (Kopfmann \& Huber, 1968)
$T_{\text {min }}=0.192, T_{\text {max }}=0.275$
5757 measured reflections
2755 independent reflections 2032 reflections with
$I>2 \sigma(I)$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 32 reflections
$\theta=2.48-17.49^{\circ}$
$\mu=3.230 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Irregular
$0.55 \times 0.50 \times 0.33 \mathrm{~mm}$
Orange
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=28.21^{\circ}$
$h=-18 \rightarrow 0$
$k=0 \rightarrow 21$
$l=-1 \rightarrow 57$
3 standard reflections every 97 reflections intensity decay: 2.49%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.071$
$S=1.007$
2755 reflections
259 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0494 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

C1	$0.0669(5)$	$0.3449(5)$
C2	$-0.0046(7)$	$0.2553(6)$
C3	$-0.0950(6)$	$0.2347(7)$
C4	$-0.1132(7)$	$0.3081(9)$
C5	$-0.0470(7)$	$0.3939(8)$
C6	$0.0446(6)$	$0.4152(6)$
C7	$0.2350(5)$	$0.3587(5)$
C8	$0.1878(7)$	$0.3309(9)$
C9	$0.2287(9)$	$0.3195(9)$
C10	$0.3184(8)$	$0.3327(8)$
C11	$0.3642(8)$	$0.3565(10)$
C12	$0.3230(7)$	$0.3716(9)$
C13	$0.1728(5)$	$0.2791(5)$
C14	$0.1738(8)$	$0.2881(7)$
C15	$0.1527(8)$	$0.2133(8)$
C16	$0.1395(7)$	$0.1309(7)$
C17	$0.1422(6)$	$0.1222(6)$
C18	$0.1564(6)$	$0.1943(5)$
C19	$-0.0158(5)$	$0.0916(5)$
C20	$-0.0708(8)$	$0.1186(8)$
C21	$-0.0817(10)$	$0.1905(9)$
C22	$-0.0427(8)$	$0.2339(7)$
C23	$0.0101(8)$	$0.2078(8)$
C24	$0.0220(7)$	$0.1332(8)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

W-SI	2.112 (4)	$\mathrm{Ag}-\mathrm{Pl}$	2.414 (2)
W-S2	2.241 (2)	$\mathrm{Ag}-\mathrm{S} 2{ }^{\prime}$	2.571 (2)
W-Ag	3.0595 (7)	$\mathrm{Ag}-\mathrm{S} 2$	2.638 (2)
I-Ag	2.9876 (11)		
S2 ${ }^{\text {11 }}$-W-S2	110.02 (5)	S2-Ag-W	45.58 (4)
$\mathrm{Ag}^{\text {I' }}-\mathrm{l}-\mathrm{Ag}$	70.56 (3)	I-Ag-W	97.53 (2)
$\mathrm{S} 21-\mathrm{Ag}-\mathrm{S} 2$	89.62 (9)	W-S2-Ag"	78.62 (5)
S2 ${ }^{1}-\mathrm{Ag}-1$	103.39 (5)	W-S2-Ag	77.19 (5)
$\mathrm{S} 2-\mathrm{Ag}-1$	101.75 (5)	$\mathrm{Ag}^{\prime \prime}-\mathrm{S} 2-\mathrm{Ag}$	82.97 (6)
P1-Ag-W	155.37 (6)	$\mathrm{C} 19{ }^{\prime \prime \prime}-\mathrm{P} 2-\mathrm{Cl} 9^{\prime \prime}$	105.3 (3)
S2 ${ }^{1}$-Ag-W	45.89 (4)	C19'1-P2-S3	113.4 (3)

Symmetry codes: (i) $1-y, 1+x-y, z ;$ (ii) $-x+y, 1-x, z ;$ (iii) $-x+y,-x, z ;$ (iv) $-y, x-y, z$

H atoms were placed at calculated positions with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$. The maximum $\left(\frac{1}{3}, \frac{3}{3}, 0.1490\right)$ and minimum $(0,0,0.0223)$ residual peaks in the final difference map were 0.97 and $0.79 \AA$, respectively, from the W atom.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: SHELXTL (Sheldrick, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: $X P$ in SHELXTL. Software used to prepare material for publication: SHELXL93.

This research was supported by grants from the Beijing Municipal Bureau of Scientific \& Technological Cadre, and the Beijing Science and Technology Commission of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1221). Services for accessing these data are described at the back of the journal.

References

Chen, Z. R., Hou, H. W., Xin, X. Q., Yu, K. B. \& Shi, S. (1995). J. Phys. Chem. 99, 8717-8721.
Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Hou, H. W., Xin, X. Q., Liu, J., Chen, M. Q. \& Shi, S. (1994). J. Chem. Soc. Dalton Trans. pp. 3211-3214.
Hou, H. W., Xin, X. Q. \& Shi, S. (1996). Coord. Chem. Rev. 153, 25-56.
Kopfmann, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Lang, J. P., Bao, S. A., Zhu, H. Z., Xin, X. Q. \& Yu, K. B. (1993). Chin. J. Chem. 11, 126-136.
McLendon, G. \& Martell, A. E. (1976). Coord. Chem. Rev. 19, 1-39.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1995). SHELXTL. Structure Determination Programs. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Shi, S. \& Xin, X. Q. (1995). J. Phys. Chem. 99, 894-898.

Acta Cryst. (1999). C55, 863-867

Addition compounds of titanium tetrachloride with aromatic nitrogen bases

Karl Hensen, ${ }^{a}$ Alexander Lemke ${ }^{a}$ and Michael Bolte ${ }^{\text {b }}$
${ }^{a}$ Institut für Physikalische und Theoretische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{b}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany. E-mail: bolte@chemie.uni-frankfurt.de

(Received 8 October 1998; accepted II January 1999)

Abstract

Three reaction products of an addition reaction of titanium tetrachloride with aromatic nitrogen bases are presented. trans-Tetrachlorobis(3,4-dimethylpyridine)titanium, $\left[\mathrm{TiCl}_{4}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$, (I), and trans-tetrachloro-bis(4-methylpyridine)titanium, $\left[\mathrm{TiCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$, (II), are both neutral complexes in which the central Ti atom is bonded to four Cl and two N atoms of two 3,4-dimethylpyridine and 4-methylpyridine ligands, respectively, resulting in a slightly distorted octahedral environment around the Ti atom. The methylpyridine ligands occupy axial positions, with the four chloro ligands in the equatorial plane. The ionic structure of bis(1-methylimidazolium) hexachlorotitanate(IV) pentachloro(N-methylimidazole- N^{3})titanate(IV), $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{TiCl}_{5}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]\left[\mathrm{TiCl}_{6}\right]_{0.5}$, (III), consists of a pentachloro(N-methylimidazole- N^{3})titanate anion and half a $\left[\mathrm{TiCl}_{6}\right]^{2-}$ complex anion, in both of which the Ti atom appears in a nearly perfect octahedral coordination sphere with two N -methylimidazolium cations as counter-ions.

Comment

Titanium tetrahalides are strong Lewis acids and form Lewis acid-Lewis base adducts with electron-pair donors (Emeléus \& Rao, 1958; Rao, 1960; Mazo et al., 1987; Hensen, Lemke \& Näther, 1997; Hensen, Pickel et al., 1997). Thus, titanium tetrachloride forms complexes with 3,4 -dimethylpyridine (3,4-dimepy), 4methylpyridine (4-mepy) and N-methylimidazole (NMI) in a $1: 2$ ratio. The structures of (I), (II) and (III) have been determined as part of our studies on the structures and properties of adducts of titanium tetrahalides and tertiary amines.

(I)

(II)

Compounds (I) and (II) belong to the symmetry point group $C_{2 h}$, with the Ti atom on a special position of site symmetry $2 / m$ and the pyridine moiety located on a crystallographic mirror plane. Only the Cl atoms and two H atoms of each methyl group occupy a general position. The Ti centre appears in a nearly ideal octahedral environment, where the two methylpyridine ligands occupy axial positions and the four chloro ligands lie in the equatorial plane. There are only minor deviations from perfect octahedral coordination. The planes of the methylpyridine rings almost exactly bisect the $\mathrm{Cl}-\mathrm{Ti}-\mathrm{Cl}$ angle. A least-squares fit of (I) and (II), fitting all non-H atoms excluding the methyl groups (r.m.s. deviation of $0.014 \AA$), shows that these two structures do not show any significant difference. The only comparable structure to (I) and (II) retrieved from the Cambridge Structural Database (Version 5.12 of April 1998; Allen \& Kennard, 1993), is $\mathrm{TiCl}_{4}(\mathrm{py})_{2}$ (Mazo et al., 1987). The geometrical parameters of all three structures are in excellent agreement. Thus, the conclusion can be drawn that the methyl groups in (I) and (II) have no influence on the geometry of the rest of the molecule.

